Different diffusion sources were used to study Zn diffusion in n-GaSb. We found that the Ga atoms from the diffusion sources suppressed the formation of the high-concentration surface diffusion fronts in Zn profiles, thus converting the kink-and-tail-shaped profile to the box-shaped profile. Our analysis demonstrated that both the surface and the tail regions in the kink-and-tail profiles showed high-quality regularities. The analysis also revealed that the formation mechanism of the box profiles is the same as that of the tail region of the kink-and-tail profiles. The similarities of the photoluminescence signals between the main region of the box profiles and the tail region of the kink-and-tail profiles substantiated our findings.
Source:IOPscience
Within an interpolation scheme, we have determined the electron g-factor and the Kane interband energetic parameter of Ga1 − xInxAsySb1 − y–GaSb semiconductors quaternary alloy and used them to determine the electron g-factor in GaSb–Ga1 − xInxAsySb1 − y–GaSb spherical quantum dots (SQDs) as well as to calculate the Landau levels. In the low-dimensional systems a framework of an eight-band effective-mass model in which the contribution of the conduction remote bands and the mixing between the conduction band Γc6 and the valence bands Γv8 and Γv7 states are considered. Our results show that the dependence of the bulk electron g-factor as a function of x can be fit with a cubic polynomial. We have established a relation between the electron g-factor and both the radius and the indium concentration in GaSb–Ga1 − xInxAsySb1 − y–GaSb SQDs. For these quaternary SQDs with a parabolic confining potential we have found that the difference between the electron energy levels corresponding to spin-up and spin-down states is larger (~ 10 meV) than the corresponding states in GaAs–(Ga, Al)As quantum wells (QWs) (~ 0.2 meV) of comparable dimensions and increases with the applied magnetic field.
Source:IOPscience
Evidences of the passivation effect are given when thin films of CdS are deposited on GaSb crystalline substrates, using a bath chemical deposition method. The passivation process is studied through photoacoustic and photoluminescence experiments. The surface recombination velocity calculated from photoacoustic measurements decreases and the radiative recombination rate as measured from photoluminescence spectra increases when the nominal S/Cd ratio in the layer deposition solution increases. The influence of the CdS layer thickness on the surface passivation of GaSb is also studied.
Source:IOPscience
For more information, please visit our website: www.semiconductorwafers.net,
send us email at sales@powerwaywafer.com and powerwaymaterial@gmail.com