2019年4月30日星期二

Photoluminescene study acceptor defects in lightly doped n type GaSb single crystals

Lightly Te-doped GaSb samples grown by the liquid encapsulated Czochralski (LEC) method have been studied by Hall measurements and low-temperature PL spectroscopy. The results suggest that acceptor-related antisite is the dominant defect in n-type GaSb with low Te-doping concentration. As the Te concentration increases, gallium vacancy related defects become the main acceptor. A new band of around 665 meV is observed in the GaSb sample with the lowest Te-doping concentration. The variation of the acceptor defects and their influence on the electronic and optical property on the n-GaSb single crystal are discussed based on the results.


Source:IOPscience

For more information, please visit our website:  www.semiconductorwafers.net,
send us email at sales@powerwaywafer.com and powerwaymaterial@gmail.com

2019年4月24日星期三

Anisotropic interface induced formation of Sb nanowires on GaSb(111)A substrates

The growth of Sb nanowires on GaSb(111)A substrates is studied by in situ azimuthal scan reflection high-energy electron diffraction (ARHEED). Bulk and layer contributions can be distinguished in the ARHEED transmission pattern through the Sb nanowires. The three-dimensional structure of the growing Sb nanowires is identified by post-growth atomic force microscopy (AFM) and x-ray diffraction (XRD). The lattice match of the Sb crystal along the $\langle \bar {2}10\rangle $ and the GaSb crystal along $\langle \bar {1}10\rangle $ directions lead to a preferential orientation of the Sb nanowires. The Sb adsorption and desorption kinetics is studied by thermal desorption spectroscopy.


Source:IOPscience

For more information, please visit our website:  www.semiconductorwafers.net,
send us email at sales@powerwaywafer.com and powerwaymaterial@gmail.com

2019年4月18日星期四

Electrical and optical property of annealed Te-doped GaSb

GaSb is the most suitable substrate in the epitaxial growth of mixed semiconductors of GaSb system. In this work, Te-doped GaSb bulk crystals with different doping concentration have been annealed at 550 °C for 100 h in ambient antimony. The annealed samples have been studied by Hall effect measurement, infrared (IR) optical transmission, Glow discharge mass spectroscopy (GDMS) and photoluminescence (PL) spectroscopy. After annealing, Te-doped GaSb samples exhibit a decrease of carrier concentration and increase of mobility, along with an improvement of below gap IR transmission. Native acceptor related electrical compensation analysis suggests a formation of donor defect with deeper energy level. The mechanism of the variation of the defect and its influence on the material properties are discussed.



Source:IOPscience

For more information, please visit our website:  www.semiconductorwafers.net,
send us email at sales@powerwaywafer.com and powerwaymaterial@gmail.com

2019年4月9日星期二

Acceptor Densities and Acceptor Levels in Undoped GaSb Determined by Free Carrier Concentration Spectroscopy

Without any assumptions regarding residual impurity species in an undoped semiconductor, it is experimentally demonstrated that the densities and energy levels of impurities can be precisely determined by the graphical peak analysis method based on Hall-effect measurements, referred to as free carrier concentration spectroscopy (FCCS). Using p-type undoped GaSb epilayers grown by molecular beam epitaxy (MBE), the densities and energy levels of several acceptor species are accurately determined. Five acceptor species are detected in the undoped GaSb epilayers grown by MBE, while two are also found in p-type undoped GaSb wafers. A 21–41 meV acceptor and a 75–99 meV acceptor exist both in the epilayers and in the wafer. On the other hand, a 164–181 meV acceptor is detected in epilayers grown at an Sb4/Ga flux beam equivalent pressure ratio of 8 or 10, while a 259 meV acceptor is found in the epilayer grown at Sb4/Ga = 6. In addition, a very shallow acceptor, which is completely ionized at 80 K, is found in the epilayers. The densities of the very shallow acceptor and the 21–41 meV acceptor are minimum at Sb4/Ga = 8, which makes the hole concentration lowest in the temperature range of the measurement.


Source:IOPscience

For more information, please visit our website:  www.semiconductorwafers.net,
send us email at sales@powerwaywafer.com and powerwaymaterial@gmail.com

2019年4月3日星期三

Mid-infrared InAs/GaSb strained layer superlattice detectors with nBn design grown on a GaAs substrate

We report on a type-II InAs or GaSb strained layer superlattice (SLS) photodetector (λ  ~4.3 µm at 77 K) with nBn design grown on a GaAs substrate using interfacial misfit dislocation arrays to minimize threading dislocations in the active region. At 77 K and 0.1 V of the applied bias, the dark current density was equal to 6 × 10−4 A cm−2 and the maximum specific detectivity D* was estimated to 1.2 × 1011 Jones (at 0 V). At 293 K, the zero-bias D* was found to be ~109 Jones which is comparable to the nBn InAs/GaSb SLS detector grown on the GaSb substrate.


Source:IOPscience

For more information, please visit our website:  www.semiconductorwafers.net,
send us email at sales@powerwaywafer.com and powerwaymaterial@gmail.com